Feast Python API Documentation¶
Client¶
-
class
feast.client.
Client
(options: Optional[Dict[str, str]] = None, **kwargs)[source]¶ Feast Client: Used for creating, managing, and retrieving features.
-
apply
(objects: Union[List[Union[feast.entity.Entity, feast.feature_table.FeatureTable]], feast.entity.Entity, feast.feature_table.FeatureTable], project: str = None)[source]¶ Idempotently registers entities and feature tables with Feast Core. Either a single entity or feature table or a list can be provided.
- Parameters
objects – List of entities and/or feature tables that will be registered
Examples
>>> from feast import Client >>> from feast.entity import Entity >>> from feast.value_type import ValueType >>> >>> feast_client = Client(core_url="localhost:6565") >>> entity = Entity( >>> name="driver_entity", >>> description="Driver entity for car rides", >>> value_type=ValueType.STRING, >>> labels={ >>> "key": "val" >>> } >>> ) >>> feast_client.apply(entity)
-
apply_entity
(entities: Union[List[feast.entity.Entity], feast.entity.Entity], project: str = None)[source]¶ Deprecated. Please see apply().
-
apply_feature_table
(feature_tables: Union[List[feast.feature_table.FeatureTable], feast.feature_table.FeatureTable], project: str = None)[source]¶ Deprecated. Please see apply().
-
archive_project
(project)[source]¶ Archives a project. Project will still continue to function for ingestion and retrieval, but will be in a read-only state. It will also not be visible from the Core API for management purposes.
- Parameters
project – Name of project to archive
-
property
core_secure
¶ Retrieve Feast Core client-side SSL/TLS setting
- Returns
Whether client-side SSL/TLS is enabled
-
property
core_url
¶ Retrieve Feast Core URL
- Returns
Feast Core URL string
-
delete_feature_table
(name: str, project: str = None) → None[source]¶ Deletes a feature table.
- Parameters
project – Feast project that this feature table belongs to
name – Name of feature table
-
get_entity
(name: str, project: str = None) → feast.entity.Entity[source]¶ Retrieves an entity.
- Parameters
project – Feast project that this entity belongs to
name – Name of entity
- Returns
Returns either the specified entity, or raises an exception if none is found
-
get_feature_table
(name: str, project: str = None) → feast.feature_table.FeatureTable[source]¶ Retrieves a feature table.
- Parameters
project – Feast project that this feature table belongs to
name – Name of feature table
- Returns
Returns either the specified feature table, or raises an exception if none is found
-
get_online_features
(feature_refs: List[str], entity_rows: List[Dict[str, Any]], project: Optional[str] = None) → feast.online_response.OnlineResponse[source]¶ Retrieves the latest online feature data from Feast Serving. :param feature_refs: List of feature references that will be returned for each entity.
Each feature reference should have the following format: “feature_table:feature” where “feature_table” & “feature” refer to the feature and feature table names respectively. Only the feature name is required.
- Parameters
entity_rows – A list of dictionaries where each key-value is an entity-name, entity-value pair.
project – Optionally specify the the project override. If specified, uses given project for retrieval. Overrides the projects specified in Feature References if also are specified.
- Returns
GetOnlineFeaturesResponse containing the feature data in records. Each EntityRow provided will yield one record, which contains data fields with data value and field status metadata (if included).
Examples
>>> from feast import Client >>> >>> feast_client = Client(core_url="localhost:6565", serving_url="localhost:6566") >>> feature_refs = ["sales:daily_transactions"] >>> entity_rows = [{"customer_id": 0},{"customer_id": 1}] >>> >>> online_response = feast_client.get_online_features( >>> feature_refs, entity_rows, project="my_project") >>> online_response_dict = online_response.to_dict() >>> print(online_response_dict) {'sales:daily_transactions': [1.1,1.2], 'sales:customer_id': [0,1]}
-
ingest
(feature_table: Union[str, feast.feature_table.FeatureTable], source: Union[pandas.core.frame.DataFrame, str], project: str = None, chunk_size: int = 10000, max_workers: int = 7, timeout: int = 120) → None[source]¶ Batch load feature data into a FeatureTable.
- Parameters
feature_table (typing.Union[str, feast.feature_table.FeatureTable]) – FeatureTable object or the string name of the feature table
source (typing.Union[pd.DataFrame, str]) –
Either a file path or Pandas Dataframe to ingest into Feast Files that are currently supported:
parquet
csv
json
project – Feast project to locate FeatureTable
chunk_size (int) – Amount of rows to load and ingest at a time.
max_workers (int) – Number of worker processes to use to encode values.
timeout (int) – Timeout in seconds to wait for completion.
Examples
>>> from feast import Client >>> >>> client = Client(core_url="localhost:6565") >>> ft_df = pd.DataFrame( >>> { >>> "datetime": [pd.datetime.now()], >>> "driver": [1001], >>> "rating": [4.3], >>> } >>> ) >>> client.set_project("project1") >>> >>> driver_ft = client.get_feature_table("driver") >>> client.ingest(driver_ft, ft_df)
-
property
job_service_secure
¶ Retrieve Feast Job Service client-side SSL/TLS setting
- Returns
Whether client-side SSL/TLS is enabled
-
property
job_service_url
¶ Retrieve Feast Job Service URL
- Returns
Feast Job Service URL string
-
list_entities
(project: str = None, labels: Dict[str, str] = {}) → List[feast.entity.Entity][source]¶ Retrieve a list of entities from Feast Core
- Parameters
project – Filter entities based on project name
labels – User-defined labels that these entities are associated with
- Returns
List of entities
-
list_feature_tables
(project: str = None, labels: Dict[str, str] = {}) → List[feast.feature_table.FeatureTable][source]¶ Retrieve a list of feature tables from Feast Core
- Parameters
project – Filter feature tables based on project name
- Returns
List of feature tables
-
list_features_by_ref
(project: str = None, entities: List[str] = [], labels: Dict[str, str] = {}) → Dict[feast.feature.FeatureRef, feast.feature.Feature][source]¶ Retrieve a dictionary of feature reference to feature from Feast Core based on filters provided.
- Parameters
project – Feast project that these features belongs to
entities – Feast entity that these features are associated with
labels – Feast labels that these features are associated with
- Returns
features>
- Return type
Dictionary of <feature references
Examples
>>> from feast import Client >>> >>> feast_client = Client(core_url="localhost:6565") >>> features = feast_client.list_features(project="test_project", entities=["driver_id"], labels={"key1":"val1","key2":"val2"}) >>> print(features)
-
property
project
¶ Retrieve currently active project
- Returns
Project name
-
property
serving_secure
¶ Retrieve Feast Serving client-side SSL/TLS setting
- Returns
Whether client-side SSL/TLS is enabled
-
property
serving_url
¶ Retrieve Feast Serving URL
- Returns
Feast Serving URL string
-
Data Source¶
-
class
feast.data_source.
BigQueryOptions
(table_ref: str)[source]¶ DataSource BigQuery options used to source features from BigQuery query
-
classmethod
from_proto
(bigquery_options_proto: feast.core.DataSource_pb2.BigQueryOptions)[source]¶ Creates a BigQueryOptions from a protobuf representation of a BigQuery option
- Parameters
bigquery_options_proto – A protobuf representation of a DataSource
- Returns
Returns a BigQueryOptions object based on the bigquery_options protobuf
-
property
table_ref
¶ Returns the table ref of this BQ table
-
classmethod
-
class
feast.data_source.
BigQuerySource
(event_timestamp_column: str, table_ref: str, created_timestamp_column: Optional[str] = '', field_mapping: Optional[Dict[str, str]] = None, date_partition_column: Optional[str] = '')[source]¶ -
property
bigquery_options
¶ Returns the bigquery options of this data source
-
property
-
class
feast.data_source.
DataSource
(event_timestamp_column: str, created_timestamp_column: Optional[str] = '', field_mapping: Optional[Dict[str, str]] = None, date_partition_column: Optional[str] = '')[source]¶ DataSource that can be used source features
-
property
created_timestamp_column
¶ Returns the created timestamp column of this data source
-
property
date_partition_column
¶ Returns the date partition column of this data source
-
property
event_timestamp_column
¶ Returns the event timestamp column of this data source
-
property
field_mapping
¶ Returns the field mapping of this data source
-
property
-
class
feast.data_source.
FileOptions
(file_format: feast.data_format.FileFormat, file_url: str)[source]¶ DataSource File options used to source features from a file
-
property
file_format
¶ Returns the file format of this file
-
property
file_url
¶ Returns the file url of this file
-
classmethod
from_proto
(file_options_proto: feast.core.DataSource_pb2.FileOptions)[source]¶ Creates a FileOptions from a protobuf representation of a file option
- Parameters
file_options_proto – a protobuf representation of a datasource
- Returns
Returns a FileOptions object based on the file_options protobuf
-
property
-
class
feast.data_source.
FileSource
(event_timestamp_column: str, file_format: feast.data_format.FileFormat, file_url: str, created_timestamp_column: Optional[str] = '', field_mapping: Optional[Dict[str, str]] = None, date_partition_column: Optional[str] = '')[source]¶ -
property
file_options
¶ Returns the file options of this data source
-
property
-
class
feast.data_source.
KafkaOptions
(bootstrap_servers: str, message_format: feast.data_format.StreamFormat, topic: str)[source]¶ DataSource Kafka options used to source features from Kafka messages
-
property
bootstrap_servers
¶ Returns a comma-separated list of Kafka bootstrap servers
-
classmethod
from_proto
(kafka_options_proto: feast.core.DataSource_pb2.KafkaOptions)[source]¶ Creates a KafkaOptions from a protobuf representation of a kafka option
- Parameters
kafka_options_proto – A protobuf representation of a DataSource
- Returns
Returns a BigQueryOptions object based on the kafka_options protobuf
-
property
message_format
¶ Returns the data format that is used to encode the feature data in Kafka messages
-
to_proto
() → feast.core.DataSource_pb2.KafkaOptions[source]¶ Converts an KafkaOptionsProto object to its protobuf representation.
- Returns
KafkaOptionsProto protobuf
-
property
topic
¶ Returns the Kafka topic to collect feature data from
-
property
-
class
feast.data_source.
KafkaSource
(event_timestamp_column: str, bootstrap_servers: str, message_format: feast.data_format.StreamFormat, topic: str, created_timestamp_column: Optional[str] = '', field_mapping: Optional[Dict[str, str]] = {}, date_partition_column: Optional[str] = '')[source]¶ -
property
kafka_options
¶ Returns the kafka options of this data source
-
property
-
class
feast.data_source.
KinesisOptions
(record_format: feast.data_format.StreamFormat, region: str, stream_name: str)[source]¶ DataSource Kinesis options used to source features from Kinesis records
-
classmethod
from_proto
(kinesis_options_proto: feast.core.DataSource_pb2.KinesisOptions)[source]¶ Creates a KinesisOptions from a protobuf representation of a kinesis option
- Parameters
kinesis_options_proto – A protobuf representation of a DataSource
- Returns
Returns a KinesisOptions object based on the kinesis_options protobuf
-
property
record_format
¶ Returns the data format used to encode the feature data in the Kinesis records.
-
property
region
¶ Returns the AWS region of Kinesis stream
-
property
stream_name
¶ Returns the Kinesis stream name to obtain feature data from
-
classmethod
-
class
feast.data_source.
KinesisSource
(event_timestamp_column: str, created_timestamp_column: str, record_format: feast.data_format.StreamFormat, region: str, stream_name: str, field_mapping: Optional[Dict[str, str]] = {}, date_partition_column: Optional[str] = '')[source]¶ -
property
kinesis_options
¶ Returns the kinesis options of this data source
-
property
Entity¶
-
class
feast.entity.
Entity
(name: str, description: str, value_type: feast.value_type.ValueType, labels: Optional[MutableMapping[str, str]] = None)[source]¶ Represents a collection of entities and associated metadata.
-
property
created_timestamp
¶ Returns the created_timestamp of this entity
-
property
description
¶ Returns the description of this entity
-
classmethod
from_dict
(entity_dict)[source]¶ Creates an entity from a dict
- Parameters
entity_dict – A dict representation of an entity
- Returns
Returns a EntityV2 object based on the entity dict
-
classmethod
from_proto
(entity_proto: feast.core.Entity_pb2.Entity)[source]¶ Creates an entity from a protobuf representation of an entity
- Parameters
entity_proto – A protobuf representation of an entity
- Returns
Returns a EntityV2 object based on the entity protobuf
-
classmethod
from_yaml
(yml: str)[source]¶ Creates an entity from a YAML string body or a file path
- Parameters
yml – Either a file path containing a yaml file or a YAML string
- Returns
Returns a EntityV2 object based on the YAML file
-
is_valid
()[source]¶ Validates the state of a entity locally. Raises an exception if entity is invalid.
-
property
labels
¶ Returns the labels of this entity. This is the user defined metadata defined as a dictionary.
-
property
last_updated_timestamp
¶ Returns the last_updated_timestamp of this entity
-
property
name
¶ Returns the name of this entity
-
to_dict
() → Dict[source]¶ Converts entity to dict
- Returns
Dictionary object representation of entity
-
to_proto
() → feast.core.Entity_pb2.Entity[source]¶ Converts an entity object to its protobuf representation
- Returns
EntityV2Proto protobuf
-
to_spec_proto
() → feast.core.Entity_pb2.EntitySpecV2[source]¶ Converts an EntityV2 object to its protobuf representation. Used when passing EntitySpecV2 object to Feast request.
- Returns
EntitySpecV2 protobuf
-
to_yaml
()[source]¶ Converts a entity to a YAML string.
- Returns
Entity string returned in YAML format
-
property
value_type
¶ Returns the type of this entity
-
property
Feature Table¶
-
class
feast.feature_table.
FeatureTable
(name: str, entities: List[str], features: List[feast.feature.Feature], batch_source: Union[feast.data_source.BigQuerySource, feast.data_source.FileSource] = None, stream_source: Union[feast.data_source.KafkaSource, feast.data_source.KinesisSource, None] = None, max_age: Optional[google.protobuf.duration_pb2.Duration] = None, labels: Optional[MutableMapping[str, str]] = None)[source]¶ Represents a collection of features and associated metadata.
-
property
batch_source
¶ Returns the batch source of this feature table
-
property
created_timestamp
¶ Returns the created_timestamp of this feature table
-
property
entities
¶ Returns the entities of this feature table
-
property
features
¶ Returns the features of this feature table
-
classmethod
from_dict
(ft_dict)[source]¶ Creates a feature table from a dict
- Parameters
ft_dict – A dict representation of a feature table
- Returns
Returns a FeatureTable object based on the feature table dict
-
classmethod
from_proto
(feature_table_proto: feast.core.FeatureTable_pb2.FeatureTable)[source]¶ Creates a feature table from a protobuf representation of a feature table
- Parameters
feature_table_proto – A protobuf representation of a feature table
- Returns
Returns a FeatureTableProto object based on the feature table protobuf
-
classmethod
from_yaml
(yml: str)[source]¶ Creates a feature table from a YAML string body or a file path
- Parameters
yml – Either a file path containing a yaml file or a YAML string
- Returns
Returns a FeatureTable object based on the YAML file
-
is_valid
()[source]¶ Validates the state of a feature table locally. Raises an exception if feature table is invalid.
-
property
labels
¶ Returns the labels of this feature table. This is the user defined metadata defined as a dictionary.
-
property
last_updated_timestamp
¶ Returns the last_updated_timestamp of this feature table
-
property
max_age
¶ Returns the maximum age of this feature table. This is the total maximum amount of staleness that will be allowed during feature retrieval for each specific feature that is looked up.
-
property
name
¶ Returns the name of this feature table
-
property
stream_source
¶ Returns the stream source of this feature table
-
to_dict
() → Dict[source]¶ Converts feature table to dict
- Returns
Dictionary object representation of feature table
-
to_proto
() → feast.core.FeatureTable_pb2.FeatureTable[source]¶ Converts an feature table object to its protobuf representation
- Returns
FeatureTableProto protobuf
-
property
Feature¶
-
class
feast.feature.
Feature
(name: str, dtype: feast.value_type.ValueType, labels: Optional[MutableMapping[str, str]] = None)[source]¶ Feature field type
-
property
dtype
¶ Getter for data type of this field
-
classmethod
from_proto
(feature_proto: feast.core.Feature_pb2.FeatureSpecV2)[source]¶ - Parameters
feature_proto – FeatureSpecV2 protobuf object
- Returns
Feature object
-
property
labels
¶ Getter for labels of this field
-
property
name
¶ Getter for name of this field
-
property
-
class
feast.feature.
FeatureRef
(name: str, feature_table: str = None)[source]¶ Feature Reference represents a reference to a specific feature.
-
classmethod
from_proto
(proto: feast.serving.ServingService_pb2.FeatureReferenceV2)[source]¶ Construct a feature reference from the given FeatureReference proto Arg:
proto: Protobuf FeatureReference to construct from
- Returns
FeatureRef that refers to the given feature
-
classmethod
from_str
(feature_ref_str: str)[source]¶ Parse the given string feature reference into FeatureRef model String feature reference should be in the format feature_table:feature. Where “feature_table” and “name” are the feature_table name and feature name respectively. :param feature_ref_str: String representation of the feature reference
- Returns
FeatureRef that refers to the given feature
-
classmethod
Constants¶
-
feast.constants.
CONFIG_FEAST_ENV_VAR_PREFIX
: str = 'FEAST_'¶ Default prefix to Feast environmental variables
-
feast.constants.
CONFIG_FILE_DEFAULT_DIRECTORY
: str = '.feast'¶ Default directory to Feast configuration file
-
feast.constants.
CONFIG_FILE_NAME
: str = 'config'¶ Default Feast configuration file name
-
feast.constants.
CONFIG_FILE_SECTION
: str = 'general'¶ Default section in Feast configuration file to specify options
-
class
feast.constants.
ConfigOptions
[source]¶ Feast Configuration Options
-
AUTH_PROVIDER
: str = 'auth_provider'¶ Authentication Provider - Google OpenID/OAuth
Options: “google” / “oauth”
-
AUTH_TOKEN
: Optional[str] = 'auth_token'¶ JWT Auth token for user authentication to Feast
-
AZURE_BLOB_ACCOUNT_ACCESS_KEY
: Optional[str] = 'azure_blob_account_access_key'¶ Account access key for Azure blob storage_client
-
AZURE_BLOB_ACCOUNT_NAME
: Optional[str] = 'azure_blob_account_name'¶ Account name for Azure blob storage_client
-
BATCH_FEATURE_REQUEST_WAIT_TIME_SECONDS
: str = 'batch_feature_request_wait_time_seconds'¶ Time to wait for historical feature requests before timing out.
-
BATCH_INGESTION_PRODUCTION_TIMEOUT
: str = 'batch_ingestion_production_timeout'¶ Default timeout when running batch ingestion
-
CORE_ENABLE_SSL
: str = 'core_enable_ssl'¶ Enable or disable TLS/SSL to Feast Core
-
CORE_SERVER_SSL_CERT
: str = 'core_server_ssl_cert'¶ Path to certificate(s) to secure connection to Feast Core
-
CORE_URL
: str = 'core_url'¶ Default Feast Core URL
-
DATAPROC_CLUSTER_NAME
: Optional[str] = 'dataproc_cluster_name'¶ Dataproc cluster to run Feast Spark Jobs in
-
DATAPROC_EXECUTOR_CORES
= 'dataproc_executor_cores'¶ No. of executor cores for Dataproc cluster
-
DATAPROC_EXECUTOR_INSTANCES
= 'dataproc_executor_instances'¶ No. of executor instances for Dataproc cluster
-
DATAPROC_EXECUTOR_MEMORY
= 'dataproc_executor_memory'¶ No. of executor memory for Dataproc cluster
-
DATAPROC_PROJECT
: Optional[str] = 'dataproc_project'¶ Project of Dataproc cluster
-
DATAPROC_REGION
: Optional[str] = 'dataproc_region'¶ Region of Dataproc cluster
-
DEADLETTER_PATH
: str = 'deadletter_path'¶ Ingestion Job DeadLetter Destination. The choice of storage is connected to the choice of SPARK_LAUNCHER.
Eg. gs://some-bucket/output/, s3://some-bucket/output/, file:///data/subfolder/
-
EMR_CLUSTER_ID
: Optional[str] = 'emr_cluster_id'¶ EMR cluster to run Feast Spark Jobs in
-
EMR_CLUSTER_TEMPLATE_PATH
: Optional[str] = 'emr_cluster_template_path'¶ Template path of EMR cluster
-
EMR_LOG_LOCATION
: Optional[str] = 'emr_log_location'¶ Log path of EMR cluster
-
EMR_REGION
: Optional[str] = 'emr_region'¶ Region of EMR cluster
-
ENABLE_AUTH
: str = 'enable_auth'¶ Enable user authentication to Feast Core
-
GRPC_CONNECTION_TIMEOUT
: str = 'grpc_connection_timeout'¶ Default connection timeout to Feast Serving, Feast Core, and Feast Job Service (in seconds)
-
GRPC_CONNECTION_TIMEOUT_APPLY
: str = 'grpc_connection_timeout_apply'¶ Default gRPC connection timeout when sending an ApplyFeatureTable command to Feast Core (in seconds)
-
HISTORICAL_FEATURE_OUTPUT_FORMAT
: str = 'historical_feature_output_format'¶ File format of historical retrieval features
-
HISTORICAL_FEATURE_OUTPUT_LOCATION
: Optional[str] = 'historical_feature_output_location'¶ File location of historical retrieval features
-
INGESTION_DROP_INVALID_ROWS
= 'ingestion_drop_invalid_rows'¶ If set to true rows that do not pass custom validation (see feast.contrib.validation) won’t be saved to Online Storage
-
JOB_SERVICE_ENABLE_CONTROL_LOOP
: str = 'job_service_enable_control_loop'¶ Enable or disable control loop for Feast Job Service
-
JOB_SERVICE_ENABLE_SSL
: str = 'job_service_enable_ssl'¶ Enable or disable TLS/SSL to Feast Job Service
-
JOB_SERVICE_SERVER_SSL_CERT
: str = 'job_service_server_ssl_cert'¶ Path to certificate(s) to secure connection to Feast Job Service
-
JOB_SERVICE_URL
: Optional[str] = 'job_service_url'¶ Default Feast Job Service URL
-
OAUTH_AUDIENCE
: Optional[str] = 'oauth_audience'¶ Oauth intended recipients
-
OAUTH_CLIENT_ID
: Optional[str] = 'oauth_client_id'¶ Oauth client ID
-
OAUTH_CLIENT_SECRET
: Optional[str] = 'oauth_client_secret'¶ Oauth client secret
-
OAUTH_GRANT_TYPE
: Optional[str] = 'oauth_grant_type'¶ Oauth grant type
-
OAUTH_TOKEN_REQUEST_URL
: Optional[str] = 'oauth_token_request_url'¶ Oauth token request url
-
PROJECT
: str = 'project'¶ Feast project namespace to use
-
REDIS_HOST
: str = 'redis_host'¶ Default Redis host
-
REDIS_PORT
: str = 'redis_port'¶ Default Redis port
-
REDIS_SSL
: str = 'redis_ssl'¶ Enable or disable TLS/SSL to Redis
-
REGISTRY_PATH
: Optional[str] = 'registry_path'¶ Object store registry
-
S3_ENDPOINT_URL
: Optional[str] = 's3_endpoint_url'¶ Endpoint URL for S3 storage_client
-
SERVING_ENABLE_SSL
: str = 'serving_enable_ssl'¶ Enable or disable TLS/SSL to Feast Serving
-
SERVING_SERVER_SSL_CERT
: str = 'serving_server_ssl_cert'¶ Path to certificate(s) to secure connection to Feast Serving
-
SERVING_URL
: str = 'serving_url'¶ Default Feast Serving URL
-
SPARK_BQ_MATERIALIZATION_DATASET
: Optional[str] = 'spark_bq_materialization_dataset'¶ The dataset id where the materialized view of BigQuerySource is going to be created by default, use the same dataset where view is located
-
SPARK_BQ_MATERIALIZATION_PROJECT
: Optional[str] = 'spark_bq_materialization_project'¶ The project id where the materialized view of BigQuerySource is going to be created by default, use the same project where view is located
-
SPARK_HOME
: Optional[str] = 'spark_home'¶ Directory where Spark is installed
-
SPARK_INGESTION_JAR
: str = 'spark_ingestion_jar'¶ Feast Spark Job ingestion jar file. The choice of storage is connected to the choice of SPARK_LAUNCHER.
Eg. “dataproc” (http and gs), “emr” (http and s3), “standalone” (http and file)
-
SPARK_LAUNCHER
: Optional[str] = 'spark_launcher'¶ Spark Job launcher. The choice of storage is connected to the choice of SPARK_LAUNCHER.
Options: “standalone”, “dataproc”, “emr”
-
SPARK_STAGING_LOCATION
: Optional[str] = 'spark_staging_location'¶ Feast Spark Job ingestion jobs staging location. The choice of storage is connected to the choice of SPARK_LAUNCHER.
Eg. gs://some-bucket/output/, s3://some-bucket/output/, file:///data/subfolder/
-
SPARK_STANDALONE_MASTER
: str = 'spark_standalone_master'¶ Spark resource manager master url
-
STATSD_ENABLED
: str = 'statsd_enabled'¶ Enable or disable StatsD
-
STATSD_HOST
: Optional[str] = 'statsd_host'¶ Default StatsD port
-
STATSD_PORT
: Optional[str] = 'statsd_port'¶ Default StatsD port
-
STENCIL_URL
: str = 'stencil_url'¶ ProtoRegistry Address (currently only Stencil Server is supported as registry) https://github.com/gojekfarm/stencil
-
TELEMETRY
= 'telemetry'¶ Telemetry enabled
-
-
feast.constants.
DATETIME_COLUMN
: str = 'datetime'¶ Default datetime column name for point-in-time join
-
feast.constants.
FEAST_CONFIG_FILE_ENV
: str = 'FEAST_CONFIG'¶ Environmental variable to specify Feast configuration file location